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Abstract

A special relativistic phenomenon called desynchronization is discussed.

Section 1 is devoted to heuristic explanation of the effect while a more

formal derivation of it by means of an appropriate coordinate transforma-

tion is presented in the Appendix. The significance of desynchronization

to clock paradox is clarified in Section 2.

1 Desynchronization

Consider a train at rest in the system of inertia I0 of the railway station, and let
a pair of ideal clocks P and Q be fixed on it. Assume that they are synchronized
correctly by light signals. Therefore, if a short light pulse is forced, by means

of mirrors, to move to and fro between them, then the time
−→
∆t of flight of the

signal from P to Q is precisely equal to the time
←−
∆t on the way back. If the

distance between the clocks is l, then both time intervals are equal to l/c. In

the example of Table 1
−→
∆t =

←−
∆t = 10.

1.Moments of reflection by the clocks at rest

Moments of reflection at P 10 30 50 70
Moments of reflection at Q 20 40 60

.
Assume now that the train starts to move1 in positive direction (to the right),

P being behind Q. Accelerating gradually (adiabatically), it finally reaches
velocity U and then continues to move uniformly with this velocity. Then the
train will be a system of inertia again which will be denoted by I. Due to the
adiabaticity of acceleration the distance between the clocks on the uniformly
moving train (in I) remains equal to l.

During this process the light pulse continues to bounce between the clocks
P and Q, but its times of flight towards and backwards are no longer equal to
each other. As seen from I0(the embarkment) these time intervals satisfy the
equations

c ·
−→
∆t0 = l0 + U ·

−→
∆t0, c ·

←−
∆t0 = l0 − U ·

←−
∆t0. (1)

1In this paper only motions along straight line will be considered.
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As indicated by index zero, in these equations the time intervals and the dis-
tance between the clocks are referred to I0. We will now express them through
unindexed quantities valid in I.

The geometrical meaning of the first of the above equations is that the light
pulse reflected from P at some moment t0 reaches Q, moving with the speed U ,

at the moment t0 +
−→
∆t0 provided

−→
∆t0 is the solution of this equation. Since

the clocks move with the speed U in I0, the proper time elapsed on both Q and

P during this coordinate time interval is equal to
−→
∆t0

√

1− U2/c2:

−→
∆t =

−→
∆t0

√

1− U2/c2.

By analogous reasoning

←−
∆t =

←−
∆t0

√

1− U2/c2.

We note finally that l0 is equal to the Lorentz-contracted distance between the
clocks as seen in I0:

l0 = l

√

1− U2/c2.

Now, if in the solution

−→
∆t0 =

l0
c− U

,
←−
∆t0 =

l0
c+ U

(2)

of (1) quantities related to I0 are expressed through their unindexed counter-
parts we arrive at the formulae

−→
∆t =

l

c
(1 + U/c) ,

←−
∆t =

l

c
(1− U/c) (3)

for the time intervals of the rightward and leftward traveling of the pulse as

shown by the clocks P and Q themselves. In the numerical example of Table 2
the former and the latter are equal to 12 and 8 respectively.

2.Moments of reflection by the moving clocks

Moments of reflection at P 10 30 50 70
Moments of reflection at Q 22 42 62

.
But measurement of light speed in the moving train would prove with cer-

tainty that it is equal to the same c in both positive and negative directions.
Therefore, synchronicity of the clocks has been lost during acceleration. This
phenomenon will be called desynchronization. It refers to ideal clocks which
never break down and is reversible since synchronicity will be restored when
the train stops again. Desynchronization is, therefore, a lasting inertial effect

like that of the ball which starts moving backward when the train begins to
accelerate and continues to roll uniformly when the train has reached its final
velocity U . In neither case the effect is caused by any physical influence. On
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the contrary, it is the consequence of the inability of taking over the motion of
the train: The ball remains at rest and the clocks remain synchronized with
respect to the railway station (the system of inertia I0) even when the train
is already moving. Saying it in a bit paradoxically, desynchronization happens
because nothing happens to the mechanism of the clocks.

Were relativity theory wrong, desynchronization of ideal clocks would never
occur. If ether existed and rested, say, with respect to the embarkment then
Table 1 would retain its validity. Table 2 would also remain essentially true

since, according to (2),
−→
∆t0 and

←−
∆t0 would be different from each other. But

now this fact would be the consequence of the real difference of light speed in
forward and backward direction rather than that of clocks’ desynchronization.

Desynchronization in relativity theory is the direct consequence of the pos-
tulate that light velocity is the same in all inertial frames. As a consequence of
this postulate, any system of inertia has its own set of correctly synchronized
virtual clocks at rest which show Minkowskian coordinate time in it. Clocks P
and Q may be considered as members of such a set S0, belonging to I0. Their
desynchronization on the moving train is an observable aspect2 of the fact, that
they do not fit into the set S associated with I.

As suggested by Table 2, the magnitude of desynchronization of Q and P is
given by the formula

Θl =
1

2

(−→
∆t−

←−
∆t

)

=
Ul

c2
. (4)

In order to synchronize them either the hand of the clock Q, travelling ahead
of P , must be moved back, or that of the clock P , travelling behind Q, must be
moved forward by Θl. It is easy to see that (4) coincides with the magnitude of
non-simultaneity in Einstein’s train-platform thought experiment.

An important consequence of desynchronization can be elucidated if one as-
sumes that a, say, 60 meter long car of the train is a physical laboratory in which

a physicist is verifying the validity of the relativistic formula dτ = dt
√

1− v2/c2.

He sets up an array of 60 ideal clocks along the car each of which is separated
by one meter distance from its neighbours and carefully synchronizes them by
means of light signals. They will serve to show Minkowskian coordinate time t
while the proper time τ will be measured with physicist’s ideal wristwatch.

Having finished synchronization, he begins, after some relaxation, the exper-
iment by walking along the car with the velocity v = 1 m/s, i.e. observing that
each subsequent clock he passes by show precisely one second more than did
the previous one. He finds that during the coordinate time interval ∆t = 60 s,
required to finish his walk, the proper time ∆τ elapsed on his wristwatch is
less than 60 seconds, as he expected. But after having repeated the experiment

several times he conludes that, contrary to the formula dτ = dt
√

1− v2/c2, two

different values of ∆τ are observed depending on the direction of his walk.
After some reflexion on the problem he remembers that synchronization was

accomplished when the train was still staying in the railway station but when

2By means of suitable hardware the effect could probably be employed in a speedometer.
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he began experimenting it was already travelling with some constant velocity.
Meanwhile the clocks got desynchronized and this fact may account for the
observed result.

Assume that the physicist moves in the same direction as the train does.
Then every next clock is ahead the time it would show were it be synchronized
correctly with the previous one. When, therefore, he reads 1 second more on
the next clock as compared to the previous one, the proper time elapsed on his
wristwatch will actually correspond to a Minkowskian coordinate time interval
less than 1 second. On the way back just the opposite occurs. Therefore, ac-
cording to his wristwatch, his walk in the direction of motion of the train should
require less time than in the opposite direction with the same unit velocity:

−→
∆τ <

←−
∆τ.

Generalization of the formula dτ = dt
√

1− v2/c2 to desynchronized coor-

dinate time follows the same line of argument. Let us denote the distance
between two adjacent clocks by dl and assume that, according to the desyn-
chronized clocks, it takes a coordinate time interval dt to cover this distance.

The speed is then equal to v =
dl

dt
. If, on the other hand, the two clocks were

synchronized correctly then, according to (4), the corresponding time interval
would be

dt̄ = dt−
Udl

c2
, (5)

leading to the speed v̄ =
dl

dt̄
. Then in terms of barred quantites, the proper time

interval elapsed on the path between the clocks is equal to dτ = dt̄
√

1− v̄2/c2.

Since v̄ =
dt

dt̄

dl

dt
=

dt

dt̄
v, this can also be written as

dτ = dt ·
dt̄

dt

√

1−

(

dt

dt̄

)2

v2/c2 = dt

√

(

dt̄

dt

)2

− v2/c2.

But, according to (5),
dt̄

dt
= 1−

Uv

c2
,

and we obtain

dτ = dt×

√

(

1−
Uv

c2

)2

− v2/c2. (6)

The velocity v is positive for walking along the motion of the train and negative
in the opposite direction.

We see then that in desynchronized coordinates the relativistic space-time
interval is given by the formula

ds2 = c2dτ2 =

(

1−
Uv

c2

)2

c2dt2 − dl2 =

= c2dt2 − 2U dt dl − (1 − U2/c2) dl2.

(7)
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Here and in what follows dl denotes displacement rather than distance.

2 Relation of desynchronization to clock para-

dox

If two objects meet each other twice than the proper time elapsed on one of
them is in general different from that passed on the other. The proper times on
the objects are shown by ideal clocks attached to them. No such phenomenon
exists in Newtonian physics hence the name clock paradox (or twin paradox) has
been given to it.

Theoretically the paradox is well understood. The proper time elapsed be-
tween two encounters is an invariant. Its value can be calculated in any coordi-
nates once the trajectory is known in terms of them. In particular, when one of
the objects is in the state of inertial motion then the longest proper time always
belongs to it.

The only reason the paradox is worth of further discussion is that its illus-
tration by the simplest conceivable thought experiment3 seems to lead to the
contradicting conclusion that the time passed on either of the two objects is
shorter than the time passed on the other. The only purpose of the following
discussion is to trace the error in this argument and correct it.

Consider the railway station at, say, M through which a train passes toward
N. Arriving at N the train immediately reverses its course back to M. In M

Alice observes transitions of the train in both directions and measures the time
TA between them. On the train Bob measures similarly the time interval TB

elapsed between their two encounters. What is the relative magnitude of the
two time intervals?

According to relativity theory the answer is unambiguous: Since Alice stayed
at rest in the system of inertia IA of the station and Bob experienced accelera-
tion at N, TB will be shorter than TA. If velocity reversal at N can be assumed
instantaneous and the velocity of the train is equal to V in both directions then,

due to time dilation in IA, TB = TA

√

1− V 2/c2 < TA.

If the distance between M and N is L then obviously

TA =
2L

V
and TB =

2L

V

√

1− V 2/c2. (8)

This conclusion, however, can be challenged by the following reasoning.
Let us consider the situation from the rest frame RB of Bob, with respect
to which Alice at first moves away and then comes back again with the velocity
V . Except for the instant of her velocity reversal, RB is a system of inertia
and as a result of time dilation her clock will go slower than Bob’s. Then

3This thought experiment is discussed by Einstein in his Dialog [1] where he suggests an
explanation in the framework of general relativity (see also [2]). Below it will be shown that
full clarification of the apparent contradiction is provided already by special relativity.
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TA = TB

√

1− V 2/c2 < TB which is just the opposite of the previous — undis-

putably correct — conclusion. It seems that the only remedy might be a jump
in the pointer position of one, or both, of the clocks at the moment of velocity
reversal but, since no such leap was assumed to happen in the discussion from
the point of view of Alices’s rest frame, such a loophole is closed.

Nevertheless, this argumentation is certainly flawed. In order to cure it we
first reconsider the correct consideration with respect to IA in more detail and
then apply exactly the same procedure to the alternative description from the
point of view of the train (i.e. in RB).

MN

Alice

Alice

Alice

Bob

Bob

Bob

ClocksPositive direction

Figure 1

At first sight it seems that, working in Alice’s rest frame, the formula

dτ = dt
√

1− V 2/c2 is applicable authomatically since IA is an inertial frame.

But this is not quite true. Quantity t is the ingredient of the space-time co-

ordinate system and relations like dτ = dt
√

1− V 2/c2, containing it, can be

formulated only if it has already be unambiguously defined. It is known (and
has been also demonstrated in the previous section) that this formula is valid
only in Minkowskian (pseudo-orthogonal) coordinate system. According to spe-
cial relativity such a coordinate system is always available but it can serve as
a rest frame only for a body performing inertial motion. Since for Alice this
condition is fulfilled we choose a Minkowskian space-time coordinate system in
which the whole environment containing both M and N is at rest.

Coordinate time tA is then shown by clocks synchronized in IA by light
signals and densily distributed in it. In general they are virtual but some of
them may be realized as shown on Fig. 1. On his way from M to N and back
Bob may record time τB elapsed on his own clock as a function of the coordinate
time tA read off on the clocks he passes by. This function is shown on Fig. 2a.

Its slope is equal to
√

1− V 2/c2.

Now an exactly analogous protocol must be applied also in the rest frame
RB of Bob. At first a space-time coordinate system must be selected in which
his train is at rest. Now it cannot be Minkowskian since Bob’s train does not
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b)a)

Figure 2

perform inertial motion. But we may assume that at least on the way from
M to N the virtual clocks on the train which show the coordinate time tB
are synchronized there by light signals. Some of these clocks may be realized
again as shown on Fig. 3. As seen on the figure the train is depicted long
enough to capture both stations but in an idealized thought experiment such
an exaggeration is obviously permitted.

On her way toward the rear end of the train and backward Alice may also
record the proper time τA shown by her clock as a function of tB read off on
the clocks she passes by. But now the slope of this function will be equal to
√

1− V 2/c2 only in the first part of her way since after reversal the coordinate

time tB becomes desynchronized and, according to (6), the slope of the function

τA(tB) will be equal to

√

(

1− Uv/c2
)2
− v2/c2 rather than

√

1− V 2/c2.

In order to calculate this slope we should express velocities U and v as
functions of V . The first of them is, by definition, equal to train’s velocity gain
during velocity reversal. According to relativistic velocity addition

U =
2V

1 + V 2/c2
(9)

In order to calculate Alice’s velocity v after reversal let us temporarily omit
index B from tB and introduce again t̄ as in (5). Then

dl

dt
= v, and

dl

dt̄
= −V.

To express the former in terms of the latter we write

v =
dl

dt
=

dl

dt̄
:
dt

dt̄
= −V :

dt

dt̄
.

For the last term (5) gives

dt

dt̄
= 1 +

U

c2
dl

dt̄
= 1− UV /c2.
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Alice

Alice

Alice

Bob

Bob

Bob

Figure 3

Hence

v = −V
1

1− UV /c2
.

Substituting U from (9) we finally obtain

v = −V
1 + V 2/c2

1− V 2/c2
. (10)

Using these equations we obtain for the slope of the function τA(tB) after ve-
locity reversal the expression

√

(

1−
Uv

c2

)2

− v2/c2 =
1 + V 2/c2
√

1− V 2/c2
. (11)

We have thereby found the error in the naiv treatment of our thought exper-

iment: It consisted in the use of the slope
dτA
dtB

=

√

1− V 2/c2 for Alice’s clock

on her way back which contradicts the behaviour of the ideal clocks showing
coordinate time in the rest frame of Bob. At the same time the correct slope
(11) verifies (8) obtained in a much simpler way in the rest frame of Alice.

With respect to the train the distance between M and N is L
√

1− V 2/c2.

In the firs part of her motion Alice covers this distance over the coordinate time

interval
−→
∆tB =

L
√

1− V 2/c2

V
. Her way back requires the same time since —

as we have emphasized in the previous section — desynchronization reflects the
inability of the clocks to adapt to the new speed of the train. Hence

−→
∆tB =

←−
∆tB =

L
√

1− V 2/c2

V
.
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Then the proper time interval TA is easily obtained:

TA =
L
√

1− V 2/c2

V







√

1− V 2/c2 +

√

(

1−
Uv

c2

)2

− v2/c2







=

=
L

V

{

(1− V 2/c2) + (1 + V 2/c2)
}

=
2L

V
,

in conformity with (8).
The value of TB follows from the observation that since Bob is at rest on

the train his clock runs in the rythm of the coordinate time tB. Hence

TB =
−→
∆tB +

←−
∆tB =

2L
√

1− V 2/c2

V

as expected. The function τA(tB) is shown on Fig. 2b.
In order to have our task completely finished we should notice that the origi-

nal formulation of clock paradox refers to a pair of naked clocks A and B without
any auxiliary device like the train and arrays of clocks. In a measurement of
TA and TB coordinates play no role at all and functions τ(t) are even not de-
fined. But calculation of TA and TB is possible only in some specified coordinate
system. Then a function τ(t) arises also automatically as by-product.

Since TA and TB are invariants, the coordinate system may be chosen ar-
bitrarily. Simplicity favors, of course, Minkowski-coordinates. But, as we have
seen, sometimes coordinates are required to be attached to one of the clocks. If it
is the accelerating one than the coordinate system will not be pseudo orthogonal
and virtual clocks, showing coordinate time, will be in general desynchronized4.
The tale of Bob’s trip may help visualizing this.

Appendix

In this Appendix desynchronization will be analysed in terms of coordinate
transformations. A coordinate system will be called attached to a reference frame
(body) if both the body’s parts and the (virtual) clocks, showing coordinate
time, are at rest in it and, in addition, any external manipulation of the clocks
(as e.g. their resyncronization) is excluded. For example, the coordinates (t0, x0)
in Section 1 are attached to the railway embankment and also to the train while
it is at rest in the station. When the train is moving with constant speed the
coordinates

t̄ =
t0 −

U

c2
x0

√

1− U2/c2
x̄ =

x0 − Ut0
√

1− U2/c2
(A.1)

are attached to it.

4The relationship of clock paradox to desynchronization has already been pointed out in
[3].
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In order to attach coordinates to the train over its whole history we split the
Lorentz-transformation (A.1) into two steps:

(t0, x0) −→ (t, x) −→ (t̄, x̄).

The individual steps are given by the formulae

t = t0

√

1− U2/c2 x =
x0 − Ut0

√

1− U2/c2
, (A.2)

and

t̄ = t−
U

c2
x x̄ = x. (A.3)

All these coordinates occurred in Section 1 (through their time components).
The coordinate time t is shown by clocks on the moving train. In (A.2) this
is ensured by the identification of t with the proper time of clocks even after
the train has started to move in I0. Coordinate time t is desynchronized since
these clocks were synchronized when the train was still standing in the station.
Coordinates (t̄, x̄) are obtained by subsequent resynchronization of t on the
moving train.

To demonstrate explicitely the correctness of this identification let us calcu-
late the spacetime interval in terms of (t, x):

ds2 = c2dt0
2 − dx0

2 = c2dt2 − 2Udt dx−
(

1− U2/c2
)

dx2. (A4)

It coincides with (7) as expected.
Light velocities

c± =

(

dx

dt

)

±

in the positive and negative directions are obtained from ds2 = 0 upon dividing
it by dt2:

(

c−
U

c
c±

)2

− c2± = 0.

Solutions of this equation are

c± = ±
c

1± U/c
.

Hence, the propagation times are

−→
∆t =

l

c+
=

l

c
(1 + U/c) ,

←−
∆t =

l

|c−|
=

l

c
(1− U/c)

in accordance with (3).
A coordinate system, say (θ, ξ), attached to the train throughout its whole

history can now be easily defined. Assuming that acceleration is instantaneous
and takes place at t0 = t = 0, we may put

(θ, ξ) =

{

(t0, x0) if t0 < 0,

(t, x) if t > 0.
(A.4)
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This transformation is at t0 = t = 0 discontinuous (except for the origin).
Hence wordlines ξ = const of objects fixed on the train have, at the moment
of acceleration, a discontinuity in spacetime, reflecting the deformation of the
train in the limit of instantaneous acceleration. On Fig. 4 the spacetime domain
occupied by the train is seen together with the world lines ξ = const of some
objects fixed on it.

x
0

ct
0

Figure 4

Now both the coordinates (t0, x0) and (t̄, x̄) are pseudo orthogonal and if an
object at rest in either of them occupies the interval (a, b) than its length is equal
to b − a. Owing to (A.3), the same is true for (t, x). Therefore, the distance
between fixed objects remains the same both before and after acceleration but
it becomes contracted in I0 when the train is moving. Obviously the same is
true for the train itself.

Therefore, our description of the train is in full agreement with the absence
of rigid bodies in relativity. Moreover, though (A.4) describes instantaneous
acceleration, its consequences coincide with those of an adiabatic one.

World lines of objects not attached to the train are, of course, continuous.
In Section 2 the coordinate system (t0, x0) played the role of coordinates

attached to the incoming train. Then (tB , xB) attached to Bob both before and
after velocity reversal is identical to (θ, ξ). The trajectory of Alice is continuous
in it and the same is true for Bob if he is sitting in the origin. This coordinate
description would permit us to draw conclusions of Section 2 by almost mechan-
ical calculations. There is no need to actually do that but to give an example
we rederive (10).

Alice’s trajectory in the coordinates attached to Bob at t0 ≤ 0 is x0 =

V t0 + L
√

1− V 2/c2. At t ≥ 0 this equation must be expressed in terms of

(t, x). Using (A.2) we obtain

x

√

1− U2/c2 +
U

√

1− U2/c2
t = V

t
√

1− U2/c2
+ L

√

1− V 2/c2.
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We now differentiate this equation and solve it with respect to ẋ:

v =
dx

dt
= −

U − V

1− U2/c2
.

Substituting here U = 2V/(1 + V 2/c2) we arrive at (10) again.
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