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Abstract

We argue that in the general relativistic calculation of planetary
orbits, the choice of a reference frame which is an obligatory condition
in the Newtonian approach is replaced by an appropriate boundary
condition on the solution of Einstein equation. Implications of this
observation on the nature of rotation and the physical interpretation
of the metric tensor are discussed.

In Principia [1] we read the following lines about Newton’s famous bucket
experiment:

If a vessel, hung by a long cord, is so often turned about
that the cord is strongly twisted, then filled with water, and held
at rest together with the water; after, by the sudden action of
another force, it is whirled about in the contrary way, and while
the cord is untwisting itself, the vessel continues for some time this
motion; the surface of the water will at first be plain, as before the
vessel began to move; but the vessel by gradually communicating
its motion to the water, will make it begin sensibly to revolve,
and recede by little and little, and ascend to the sides of the
vessel, forming itself into a concave figure... This ascent of the
water shows its endeavour to recede from the axis of its motion;
and the true and absolute circular motion of the water, which is
here directly contrary to the relative, discovers itself, and may be
measured by this endeavour. ... And therefore, this endeavour
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does not depend upon any translation of the water in respect to
ambient bodies, nor can true circular motion be defined by such
translation. ...; but relative motions...are altogether destitute of
any real effect. ...

In the 19th century, this experiment could have been rephrased in the
following way: When calculating planetary orbits, only the law of universal
gravitation is taken into account on the right-hand side of Newton’s equation,
no inertial forces are included. With this, we automatically assume that we
are in an inertial (specifically non-rotating) frame of reference. However,
such an inertial system of the size of the Solar System cannot be realized,
so instead, we check the correctness of the calculations in relation to distant
stars and find that the observations confirm the calculations very accurately.
Why?

For the sake of brevity, we will refer to the question formulated in the
original bucket experiment and in its form outlined in the previous paragraph
as Newton’s problem.

Newton’s problem is logically similar to the problem of the equality of
the inertial and gravitational mass (which, of course, is also a ”Newton’s
problem”). Knowing the genesis of the general theory of relativity, however,
we are inclined to consider the latter to be much more fundamental than the
former. But it is by no means certain that this is no more than hindsight.
Perhaps it is enough to refer to Lorentz’s electromagnetic theory of gravity
[2], which he published in 1900. According to the priorities in physics of those
times, Lorentz considered the elimination of the action at a distance from
Newton’s theory to be much more important than explaining the equality of
inertial and gravitational mass. His ambitious theory built on the analogy of
electrodynamics transformed gravitation into retarded interaction between
celestial bodies, but the equality of the two kinds of mass in his theory
remained a mystery to be solved in the future. We believe that within the
framework of Newtonian dynamics, Newton’s problem is as important as
the equality of the inertial and gravitational masses. Below, however, we
argue that the general theory of relativity solves the former problem too in
a natural way.

Newton’s answer to Newton’s problem was that rotation is absolute [1]:

It is indeed a matter of great difficulty to discover, and effectu-
ally to distinguish, the true motions of particular bodies from the
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apparent; because the parts of that immovable space in which
these motions are performed, do by no means come under the
observations of our senses.

However, this concept was and presumably is still rejected by most physicists.
Hans Reichenbach, for example, comments it as follows [3]:

Newton’s argument was severely criticized by Ernst Mach,
who showed that it involved a serious non sequitur. Newton noted
quite correctly that the variations in the shape of the surface of
the water are not connected with the rotation of the water relative
to the sides of the bucket. But he concluded that the deformations
of the surface must therefore be attributed to a rotation relative
to absolute space. However, this conclusion does not follow from
the experimental data and Newton’s other assumptions, for there
are in fact two alternative ways of interpreting those data: the
change in the shape of the water’s surface is a consequence of
either of a rotation relative to absolute space or of a rotation
relative to some system of bodies different from the bucket.

As a matter of fact, intuition seems indeed to suggest that if uniform
translation is a relative phenomenon then uniform rotation should be a rela-
tive process either. This expectation, however, is not justified at all, because
there is a very significant difference between uniform translation and uniform
rotation even at the level of pure kinematics. The relativity of uniform trans-
lation is related to the existence of a velocity addition law in both Newtonian
and relativistic physics, which endows uniform translations with a Lie group
structure. However, there is no analogous ”angular velocity addition law”
for rotations around axes intersecting at some common point because two
consecutive uniform rotations in general lead to nonuniform rotation. As a
result, uniform rotations around different axes do not form a Lie group, even
though time-independent translations and rotations both have a Lie group
structure. This fundamental difference between uniform rotations and uni-
form translations makes ideas based on the relativity of rotation untenable.

In the 20th century, planetary orbits are interpreted as geodesics in space-
time deformed by the huge mass of the Sun. To calculate them one is faced
with the problem to choose the coordinate system best suited to the physical
situation under study. In sharp difference with Newtonian treatment, there
seems to be no place for choosing an inertial reference frame too in addition to
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the coordinate system because in general relativity no global inertial frames
exist. In spite of these fundamental differences results of general relativistic
calculations turn out very similar to those of Newton’s theory of gravity,
though they correct and implement them in several important respects.

The subject of the present note concerns this difference between New-
tonian and general relativistic treatment of planetary motion and can be
summarized in the following statement which justifies the established prac-
tice: In general relativity the choice of inertial reference frame is replaced

by the requirement that the solution be asymptotically Minkowski up to a
time-independent transformation of space coordinates. The Schwarzschild
and the Kerr solutions obviously obey this criterion. Notice that it refers to
coordinates rather than the geometric property of asymptotic flatness which
is supposed to be the case.

These solutions can of course be rewritten in rotating coordinates — there
are problems that are easier to solve in a rotating coordinate system both in
Newtonian gravity and general relativity. For example, when a point mass
revolves uniformly in a circular orbit around a spherically symmetric star of
mass M , we obtain in rotating Schwarzschild coordinates

ds2 =

[

1−
rg
r
−

(rω

c

)2

· sin2 ϑ

]

c2dt2−

− 2ωr2 sin2 ϑ dtdϕ−
dr2

1− rg/r
− r2(dϑ2 + sin2 ϑ dϕ2),

the following answer for the relation between the radius r of the rotation and
its angular velocity ω:

Γr
tt =

r − rg
r

(

MG

r2
− rω2

)

= 0.

In the language of Newtonian physics, formally (because r is not a dis-
tance, but a coordinate), this condition exactly corresponds to the equality
of gravitational attraction and centrifugal force. However, in the theory of
general relativity, the criterion of non-rotation cannot consist in the absence
of the centrifugal force (a concept which is meaningless outside local frames),
but rather in the smooth, continuous, singularity-free transition of the metric
around the star into the asymptotic Minkowski metric. The rotating coor-
dinate system does not meet this condition because it has a characteristic
coordinate singularity: The component g00 changes sign at finite r while
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gtϕ −→ ∞ as r −→ ∞. It is for this reason that the line element above is
related to a nonrotating object in rotating coordinates rather than the other
way around.

In general relativity, considering an isolated star is an accepted idealiza-
tion [4], although strictly speaking such objects don’t exist in the Universe.
According to this assumption, the space-time of a solitary star S1 can be
considered asymptotically flat, because the influence of other stars and the
cosmological curvature of space-time can be disregarded with high accuracy.

Let us now consider another star S2 in this asymptotic domain. This
star will usually move with some constant velocity ~v in the asymptotically
Minkowski coordinates K1 of the star S1. The asymptotic Minkowski coordi-
nates K2 belonging to S2 will therefore differ from the asymptotic coordinates
of K1 in a Lorentz transformation corresponding to the stellar velocity. In
the region between the two stars, distant from both, the homeomorphism be-
tween the two maps K1 and K2 will, therefore, be the Lorentz transformation
corresponding to the speed of S2

1. The roles of the two stars are obviously
interchangeable, so their translational motion is relative2.

Their rotation is, however, absolute. In the common domain, the two
overlapping coordinate systems are Minkowski, so they rotate neither by
themselves nor relative to each other. They are the asymptotics of the co-
ordinate systems in the near stellar regions which on their part are contin-
uations of the inner solution of the Einstein equations. The metric of the
internal coordinate system fixes the energy-momentum tensor and from the
components of this tensor, we can calculate the motion of the material the
star is made of relative to the overlapping common nonrotating coordinate
system described at the beginning of this paragraph. If, for example, the
outer solution is Kerr, then the star’s material is generally rotating in an
absolute sense.

If this argumentation is correct, then Newton’s problem ceases to be a

1Relation of this kind of description to the Standard Model of Cosmology is unclear
because the Einstein-Straus problem [5] has yet no universally accepted solution. The
description of the Universe as the multitude of overlapping coordinate patches of individ-
ual stars is in a sense dual to the Standard Model which is based on the notion of the
cosmological fluid of smoothed-out matter. From this point of view the homeomorphisms
we are speaking about may be slightly different from Lorentz-transformation but we hope
that this quantitative uncertainty does not invalidate our argumentation.

2If S2 has an angular momentum, this homeomorphism must also contain a spatial
rotation, which is determined by the direction of the z-axis of K2 relative to the axes of
K1.

5



problem. To illustrate this, consider the calculation and measurement of the
geodetic precession of a gyroscope orbiting S1 as the 21st-century version of
the bucket experiment. The calculation is performed in the Schwarzschild
or Kerr coordinates of S1. But since these coordinate systems only exist in
our imagination, we relate the gyroscope’s orientation to the direction of the
very distant guide star S2. According to experience, the precession rate we
measure corresponds to the calculation within experimental error. Why?

Because the coordinate system K1 used for the calculation is actually
not independent from that of the guide star, since it is part of an overlap-
ping singularity-free coordinate system consisting of two maps (coordinate
patches) that contains both objects and does not rotate. As for the require-
ment of regularity, it is made possible by the fact that the general theory
of relativity is a field theory, in which this is a meaningful prescription for
the field quantity gij(x). In Newtonian physics, which is a particle theory,
no such possibility exists, and it is this fundamental difference which makes
connecting S1 with the very distant S2 a much more difficult task.

In the solution of electrodynamic problems, the lack of singularity in re-
gions free of charges is a natural requirement because Maxwell’s equations
describe the dynamics of a special type of continuous substance, the elec-
tromagnetic field. Today in general relativity no such background is felt
behind gij(x). Moreover, the equivalence of coordinate systems seems even
to prohibit this kind of interpretation of the metric tensor.

Coordinate systems are, however, equivalent to each other only in that
either they all satisfy Einstein’s equations, or none of them do. In other
respects they may be distinguished from each other and in calculations this
possibility is systematically exploited. For example, we can require that the
coordinate system reflect the symmetries of the physical object whose space-
time is being examined. Since coordinate systems, which are equivalent from
the point of view of the Einstein equations, may differ from each other in
coordinate singularities, we are allowed, if necessary, to require that they do
not contain certain types of coordinate singularities.

If we perceived vacuum as a continuous substance rather than pure void or
emptiness then the absence of singularity in regions of space without masses
would become as natural property of the metric as the continuity of ~E(x)

and ~B(x) in charge free regions.
In 1920, in his now little-known Leyden lecture [6], Einstein argued that

general relativity actually requires the rehabilitation of the ether hypothesis,
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which would play the role of such a substance3:

[T]here is a weighty argument to be adduced in favour of the
ether hypothesis. To deny the ether is ultimately to assume that
empty space has no physical qualities whatever. The fundamen-
tal facts of mechanics do not harmonize with this view. For the
mechanical behaviour of a corporeal system hovering freely in
empty space depends not only on relative positions (distances)
and relative velocities but also on its state of rotation, which
physically may be taken as a characteristic not appertaining to
the system itself. In order to be able to look upon the rota-
tion of the system, at least formally, as something real, Newton
objectiveses space. Since he classes his absolute space together
with real things, for him rotation relative to an absolute space is
also something real. Newton might no less well have called his
absolute space ”ether”; what is essential is merely that besides
observable objects, another thing, which is not perceptible, must
be looked upon as real, to enable acceleration or rotation to be
looked upon as something real.

As a consequence of the absence of privileged coordinate systems (rest
system, for example), this ether, whose existence is compatible with both
special and general relativity, must differ from the pre-relativistic concept of
ether in that no state of motion or rest can be attributed to it [5]:

Not every extended conformation in the four-dimensional world
can be regarded as composed of world threads. The special theory
of relativity forbids us to assume the ether to consist of particles
observable through time, but the hypothesis of ether in itself is
not in conflict with the special theory of relativity. Only we must
be on our guard against ascribing a state of motion to the ether.

Developments in physics in the last hundred years support Einstein’s
concept of the ether: The vacuum cannot be mere emptiness, because ac-
cording to quantum field theory, it has physical properties. In Einstein’s
equation, the term containing the cosmological constant can be interpreted
as the energy-momentum tensor of the vacuum [8]:

3
L. Kostro published several articles and a book about the evolution of Einstein’s

conception of the ether. In [7] one can find references to these works.
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T
(vac)
ij (x) =

c4

8πG
Λgij(x).

This conception, which today is only a plausible hypothesis, might be the
indication of a connection between the physical properties of the vacuum and
the metric tensor. Since ∇igjk = 0 no four-vector can be formed from T

(vac)
ij

by differentiation and so its existence is compatible with the requirement
that no state of motion be attributable to the ether of general relativity.
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